miR-30c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein

نویسندگان

  • Ya-Qiang Huang
  • Xiao-Hui Ling
  • Run-Qiang Yuan
  • Zhi-Yun Chen
  • Sheng-Bang Yang
  • Hong-Xing Huang
  • Wei-De Zhong
  • Shao-Peng Qiu
چکیده

Our previous study revealed that microRNA (miR) ‑30c represents a potential tumor suppressor gene, the expression of which is associated with decreased oncogenic potential in prostate cancer (PCa) cell lines. However, the functional role and underlying mechanisms of miR‑30c in PCa remain to be fully elucidated. Reverse transcription‑quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of alternative splicing factor/splicing factor 2 (ASF/SF2) in PCa tissues. A luciferase reporter assay was used to investigate whether ASF/SF2 may be a direct target gene of miR‑30c. In addition, the effects of miR‑30c on the proliferation and apoptosis of PCa cell lines were examined, following transfection with miR‑30c mimics. Furthermore, correlation analysis was performed to investigate the relationship between the expression of miR‑30c and ASF/SF2 and various clinicopathological parameters of patients with PCa. The present results demonstrated that PCa tissues exhibited higher levels of alternative splicing factor/splicing factor 2 (ASF/SF2), compared with normal tissues. In addition, miR‑30c was revealed to targete the 3'‑untranslated region of the ASF/SF2 gene, causing a decrease in the mRNA and protein levels of ASF/SF2. Furthermore, miR‑30c was reported to decrease cell proliferation, increase the percentage of cells in the G1 cell cycle phase, and promote apoptosis through the inhibition of ASF/SF2. Following correlation analysis using patient samples, the expression of ASF/SF2 was revealed to be tightly correlated with the pathological stage of PCa and biochemical recurrence (BCR). In addition, patients with PCa exhibiting low expression levels of miR‑30c and high expression of ASF/SF2 had significantly lower rates of BCR‑free survival. In conclusion, the present study suggested that the tumor suppressor miR‑30c may be involved in PCa tumorigenesis, possibly via targeting ASF/SF2. The combined analysis of the expression of ASF/SF2 and miR‑30c may be a valuable tool for early prediction of BCR in patients with PCa following radical prostatectomy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The splicing-factor oncoprotein SF2/ASF activates mTORC1.

The splicing factor SF2/ASF is an oncoprotein that is up-regulated in many cancers and can transform immortal rodent fibroblasts when slightly overexpressed. The mTOR signaling pathway is activated in many cancers, and pharmacological blockers of this pathway are in clinical trials as anticancer drugs. We examined the activity of the mTOR pathway in cells transformed by SF2/ASF and found that t...

متن کامل

Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF.

Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues i...

متن کامل

Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene.

The cyclin D1b oncogene arises from alternative splicing of the CCND1 transcript, and harbors markedly enhanced oncogenic functions not shared by full-length cyclin D1 (cyclin D1a). Recent studies showed that cyclin D1b is selectively induced in a subset of tissues as a function of tumorigenesis; however, the underlying mechanism(s) that control tumor-specific cyclin D1b induction remain unsolv...

متن کامل

The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.

The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, A...

متن کامل

HnRNP A1/A2 and SF2/ASF Regulate Alternative Splicing of Interferon Regulatory Factor-3 and Affect Immunomodulatory Functions in Human Non-Small Cell Lung Cancer Cells

Heterogeneous nuclear ribonucleoparticule A1/A2 (hnRNP A1/A2) and splicing factor 2/alternative splicing factor (SF2/ASF) are pivotal for precursor messenger RNA (pre-mRNA) splicing. Interferon regulatory factor-3 (IRF-3) plays critical roles in host defense against viral and microbial infection. Truncated IRF-3 proteins resulting from alternative splicing have been identified and characterized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017